
Bounds from Slopes

David M. Gay
Optimization and Uncertainty Quantification

Sandia National Laboratories ∗

Albuquerque, NM

March 24, 2010

Abstract

Sometimes it is desirable to compute good bounds on the possible
values of an algebraic expression involving variables only known to lie
in prescribed finite intervals. While interval arithmetic gives rigorous
bounds, if some variables appear more than once in the expression,
bounds from interval arithmetic can be very pessimistic. Propagation
of Taylor series has long been known as a way to obtain much tighter
bounds. More recently, researchers have shown that slope computa-
tions often give tighter bounds than Taylor series. First-order slope
computations are fairly straightforward, but second-order slope com-
putations sometimes give still better bounds. This paper reviews in-
terval, Taylor-series and slope computations, provides some proofs,
presents a possibly new bound optimization, and discusses implemen-
tation approaches based on expression graphs and operator overload-
ing, and describes a still unfinished, open-source implementation for
experimenting with expression graphs.

∗Sandia National Laboratories is a multi-program laboratory operated by Sandia Cor-
poration, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration under contract DE–AC04–
94AL85000. This document is to be released as SAND2010-1794P.

1

1 Introduction

Mathematical models often take the form of equations or optimization prob-
lems whose solutions represent some quantity of interest. Such models com-
monly involve parameters — input values — that are not known exactly, per-
haps because they can only be (or have only been) measured approximately
or because they depend on future events or other sources of uncertainty. In
some cases, theory or long observation may suggest probability distributions
for uncertain parameters. More often, reasonable bounds on such parameters
may be known or can be guessed. Sometimes, e.g., in manufacturing, bounds
on some input parameters can be reduced if necessary, but such reductions
increase costs. For various reasons (e.g., assessing the validity of a model,
controlling costs, guarding against catastrophic failure, or performing global
optimization), it is useful to compute bounds on computed quantities from
bounds on the input parameters involved.

This paper is concerned with the special but often useful case of comput-
ing bounds on algebraic expressions that involve input parameters that lie in
specified intervals. Crude bounds can be computed with interval arithmetic,
and arbitrarily tight bounds can be computed by Taylor-series methods. Of
interest in this paper are variants of Taylor-series methods that use slopes,
which are bounds on divided differences. First- and second-order slope com-
putations often give tighter bounds than do corresponding first- and second-
order Taylor-series computations.

Slope computations are described by various papers, some of which are
cited below, in the literature on interval analysis. The next section briefly
reviews interval analysis and interval arithmetic. Sections 3 and 5 discuss
first- and second-order slopes. Component-wise expansions are appealing, as
explained in §4. Section 6 discusses some implementation strategies and an
ongoing, open-source implementation for experimenting with slope compu-
tations on expression graphs. Concluding remarks appear in §7.

2 Interval Analysis and Arithmetic

Interval analysis encompasses techniques for computing bounds on expres-
sions from bounds on the operands.

Interval analysis is a form of real and complex analysis in which some
variables are constrained to lie in specified intervals (or disks); a primary goal

2

is to compute bounds on function values and solution sets. As explained in
Rump’s nice (draft) survey paper [24], the roots of interval analysis go back
at least to the 1930’s, but it was Ramon Moore [18, 19, 20] who brought this
area to the attention of many researchers, leading to significant progress.
(Though retired, Moore is still active [21].)

The earliest and simplest form of interval analysis is interval arithmetic,
in which bounds on an expression are computed operation by operation,
using only bounds on the operands. Rules for the elementary operations
{+,−,×,÷} are straightforward: if x = [x, x] and y = [y, y] are intervals
(x ≤ x, y ≤ y), then exact interval arithmetic on them is defined by

x + y = [x+ y, x+ y]

x− y = [x+ y, x+ y]

x× y = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)] (1)

x÷ y = [min(x/y, x/y, x/y, x/y),max(x/y, x/y, x/y, x/y)], (2)

assuming y > 0 or y < 0 in (2). Of course, (1) and (2) can be broken into
simpler cases involving tests on the signs of the operands. For example, if
x ≥ 0 and y > 0 then x× y = [xy, xy] and x÷ y = [x/y, x/y].

In computer implementations, we can use directed roundings [14] to com-
pute outer approximations of interval arithmetic.

If each operand occurs only once in an algebraic expression, then eval-
uating the expression with interval arithmetic delivers optimal bounds on
the expression’s value. Much more commonly, some variables appear several
times, and interval arithmetic may then yield decidedly pessimistic bounds,
because each appearance of a variable is in effect treated as though it could
have a value separate from its other appearances. For example, if x ∈ [−1, 2],
then x2 ∈ [0, 4], but computing [−1, 2]× [−1, 2] with interval arithmetic gives
[−4, 4].

For discussing overestimation, it is useful to define the width of a set
S ⊂ R by

w(S) = sup
ζ,ξ∈S

|ζ − ξ|. (3)

For an interval x = [x, x], this is just w(x) = x − x. For f : Rn → R and
X ⊂ Rn, let f(X) = {f(x) : x ∈ X} denote the range of f over X. Given
an outer approximation F ⊃ f(X) of this range, let

r(F, f(X)) = w(F)/w(f(X))− 1 (4)

3

denote the relative excess with of F as an approximation to f(X). Extending
the width definition to X ⊂ Rn so w(X) = maxn

i=1 maxx,y∈X |eT
i (x − y)| is

the maximum width of X in the direction of any standard unit vector ei, we
would like to compute approximations F such that

r(F, f(X)) = O(w(X)), (5)

i.e., the excess width is no more than a constant times the domain width.
That way, by breaking a given domain into small enough subdomains, we
can compute an overall approximation with relative excess width no more
than a prescribed ε > 0. This in general is not possible with simple interval
arithmetic.

Taylor-series approximations (which are described, e.g., in [20]) can yield
much tighter bounds than simple interval arithmetic. Suppose the input
parameters mentioned above are represented as n independent variables xi

(1 ≤ i ≤ n) that lie in specified finite intervals: xi ∈ [xi, xi], and that we are
interested in an algebraic computation of the form

xi = fi(x1, ..., xi−1) (6)

for i = n+1, n+2, ...,m, where fi is either an elementary arithmetic operation
or an elementary function, usually involving only one or two of the arguments
xj (j < i). After choosing a point (z1, ..., zn) (such as the midpoints zi =
1
2
(xi +xi) of the input intervals) and an expansion order d ≥ 1, we can recur

a Taylor series approximation

Ti(x1, ..., xn) =
d−1∑
j=0

∑
|σ|=j

ci,σ
∏
k∈σ

(xk − zk) +
∑
|σ|=d

Ri,σ

n∏
k=1

(xk − zk)
σk (7)

in which |σ| = j is an n-tuple of nonnegative integers summing to j, the ci,σ
are constants (or, for rigor, small intervals computed with interval arithmetic)
and the Ri,σ are interval bounds on the suitably scaled d-th order partials of
fi over the range of the arguments to fi. Of course, the complexity of this
approach grows as nd, but the approach could be feasible to use for d = 1
or d = 2 when n is not too large. (It works well for reasonably large d when
n = 1, but that is another story.) For a given f = fm computed by (6) and
X =

∏n
i=1[xi, xi] with w(X) not too large, Taylor-series approximations (7) of

order d can produce an outer approximation F with r(F, x(F)) = O(w(X)d);
in principle, with d = 1 we can already achieve (5). But as the next sections
show, more efficient computations are often possible.

4

3 First-Order Slopes

For d = 1, we can use interval bounds on first derivatives for the Ri,σ in (7).
That is, if X ⊂ Rn is a Cartesian product of finite intervals and F ′

i (X) ⊇
∂f
∂xi

(X), then evaluating

f(z) +
n∑

i=1

F ′
i (X)(X − z) (8)

in interval arithmetic gives a set of values that contains f(X).
Krawczyk and Neumaier [16] (and for n > 1, Neumaier [22]) have pro-

posed a choice for the Ri,σ that often works better than (8): first-order slopes.
For the moment, let n = 1. Given f : R → R for x, z ∈ R with x 6= z, the
slope f [x, z] is defined by

f [x, z] =
f(x)− f(z)

x− z
. (9)

When f is continuously differentiable, limx→z f [x, z] = f ′(z), in which case
we define f [z, z] ≡ f ′(z). Then for any x ∈ R, we have

f(x) = f(z) + f [x, z](x− z). (10)

For a finite interval X ⊂ R, by computing an outer approximation F [X, z]
to f [X, z] (i.e., a set F [X, z] ⊂ R with {f(x, z) : x ∈ X} ⊆ F [X, z]), we can
obtain an outer approximation of f(X) by evaluating f(x) + F [X, z](X −
z) with interval arithmetic. This often gives a tigher approximation than
(8), because f [X, z] can be significantly smaller than f ′(X). Consider, for
example, f(x) = 1

2
x2 and X = [−1, 3]. Then f ′(X) = [−1, 3] while f [X, z] =

[0, 2] for z = 1. This is illustrated in Figure 1.
Kolev [15] gives theorems that can be useful in bounding slopes over

intervals. For example:

Theorem 1 Suppose X ⊂ R is a finite interval, z ∈ X, and and f : X → R
is twice continuously differentiable, i.e., f ∈ C2(R). If f ′′(x) ≥ 0 ∀ x ∈ X,
then φ(x) ≡ f [x, z] is an increasing function on X (i.e., φ′(x) ≥ 0), and if
f ′′(x) ≤ 0 ∀ x ∈ X, then φ(x) is a decreasing function on X (i.e., φ′(x) ≤ 0).

Kolev’s proof relies on a property of second-order slopes, but an elemen-
tary proof is possible.

5

. ..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

deriv.
range

slope
range

Figure 1: Slopes versus derivative intervals, f(x) = 1
2
x2 on [−1, 3].

Proof. Since φ(x) = f(x)−f(z)
x−z

for x 6= z,

φ′(x) = (x− z)−2 (f ′(x)(x− z)− (f(x)− f(z)))

= (x− z)−2 (f(z)− (f(x)− (x− z)f ′(x))) .

By Taylor’s Theorem, f(z) = f(x) − (x − z)f ′(x) + (x−z)2

2
f ′′(ζ) for some ζ

between x and z, so φ′(x) = 1
2
f ′′(ζ). By continuity, this also holds for x = z

(with ζ = z). Since ζ ∈ X, the result follows. �
Thus on an interval X = [x, x] where f is convex or concave, f [X, z] is

bounded by f [x, z] and f [x, z].

6

4 Component-wise Expansions

For general n > 1 and f : Rn → R, f [x, z] can be defined in various ways.
For example, by computing interval enclosures Fi[X, z] of

f(x)− f(z)

eT
i (x− z)

for each i, 1 ≤ i ≤ n, we would obtain

f(X) ⊂ f(x) +
n∑

i=1

Fi[X, z](Xi − zi), (11)

when X =
∏n

i=1 is the Cartesian product of intervals Xi. However, as advo-
cated, e.g., by Hansen [13] and Rump [23], we can often get tighter bounds
by expanding one component at a time of X. The idea is still use (11), but
with Fi[X, z] enclosing{

f(x)− f(z)

eT
i (x− z)

: x ∈ X1 ×X2 × ...×Xi × {zi+1} × ...× {zn}
}

so for i < j, Fi[X, z] is bounded over a smaller set than is Fj[X, z], which
can result in tighter bounds than when all are bounded over the full X.

With component-wise expansions, permuting the variables may give rise
to different over-estimations. In very simple cases, the “best” permutation
may be apparent, but in general the only way to find the “best” permutation
may be exhaustive search of all n! possibilities. Of course, all are qualitatively
the same in the sense of (5), so the choice of variable ordering does not seem
like a major concern.

5 Second-Order Slopes

Second-order slopes, first discussed by Zuhe and Wolfe [30], have been defined
several ways, including recursive construction rules [30], a divided-difference
formula [15] (see (12) below), and as 5- [27] or 7-tuples [26]. I like a divided-
difference formula. Let n = 1 and f : R → R be continuously differentiable.
For x, z ∈ R with x 6= z,

f [x, z, z] =
f [x, z]− f ′(z)

x− z
(12)

7

defines the second-order slope f [x, z, z]. If f ∈ C2(R), then limx→z f [x, z, z] =
1
2
f ′′(z), so we define f [z, z, z] = 1

2
f ′′(z). From (12) and (9), we immediately

obtain
f(x) = f(z) + f ′(z)(x− z) + f [x, z, z](x− z)2. (13)

Thus if we have an interval F [X, z, z] ⊃ f [X, z, z], computing an outer ap-
proximation of

f(z) + f ′(z)(X − z) + F [X, z, z](X − z)2 (14)

with interval arithmetic gives an outer approximation of f(X). This approx-
imation is often tighter than a corresponding outer approximation computed
from a first-order slope.

A slightly tighter approximation is sometimes possible, as summarized
for convenience in the following theorem.

Theorem 2 Assume f : R → R is differentiable, and let z ∈ R and a
compact interval X ⊂ R be given. Suppose [F, F] ⊂ R is a compact interval
with

f [X, z, z] ⊆ [F, F]. (15)

(a) If F > 0 and x∗ = z − f ′(z)/(2F) ∈ X, then f(x) ≥ f(z) + f ′(z)(x∗ −
z) + F (x∗ − z)2 for all x ∈ X. Alternatively, (b) if F < 0 and x∗ = z −
f ′(z)/(2F) ∈ X, then f(x) ≤ f(z)+f ′(z)(x∗−z)+F (x∗−z)2 for all x ∈ X.

Proof. From (13) and (15), the quadratic forms

q(x) = f(z) + f ′(z)(x− z) + F (x− z)2

and
q(x) = f(z) + f ′(z)(x− z) + F (x− z)2

satisfy q(x) ≤ f(x) ≤ q(x) ∀ x ∈ X. If (a) holds, then f(x) ≥ q(x∗) ∀ x ∈ X,
and if (b) holds, then f(x) ≤ q(x∗) ∀ x ∈ X. �

When Theorem 2 applies, we get a tighter bound on one side than eval-
uation of (14) with interval arithmetic would give.

For bounding second-order slopes over intervals, another result from [15]
is useful (and similar to Theorem 1), and again has an elementary proof:

Theorem 3 Suppose X ⊂ R is a finite interval, z ∈ X, and and f : X → R
is thrice continuously differentiable, i.e., f ∈ C3(R). If f (3)(x) ≥ 0 ∀ x ∈ X,
then ψ(x) ≡ f [x, z, z] is an increasing function on X (i.e., ψ′(x) ≥ 0), and
if f (3)(x) ≤ 0 ∀ x ∈ X, then ψ(x) is a decreasing function on X (i.e.,
φ′(x) ≤ 0).

8

Proof. Since

ψ(x) =

f(x)−f(z)
x−z

− f ′(z)

x− z
,

ψ′(x) = (x− z)−2(f ′(x) + f ′(z))− 2(x− z)−3(f(x)− f(z))

= (x− z)−3ν(x)

with ν(x) ≡ (x− z)(f ′(x) + f ′(z))− 2f(x) + 2f(z). Now ν(z) = 0, and

ν ′(x) = f ′(z)− (f ′(x) + (z − x)f ′′(x)).

By Taylor’s Theorem, f ′(z) = f ′(x) + (z − x)f ′′(x) + 1
2
(z − x)2f (3)(ξ) for

some ξ between x and z, so ν ′(x) = 1
2
(z − x)2f (3)(ξ), whence ψ′(x) ≥ 0 if

inf f (3)(X) ≥ 0 and ψ′(x) ≤ 0 if sup f (3)(X) ≤ 0, and the result follows. �
For n > 1, it is possible to define second-order slopes to be n × n ma-

trices, but it is simpler and perhaps more accurate to proceed as in §4,
expanding each operation one dimension at a time and only dealing with one-
dimensional second-order slopes, which for the second and higher dimensions
must be bounded with interval arithmetic. Specifically, if X =

∏n
i=1[xi, xi],

when expanding dimension i > 1, instead of the point value f ′(z) in (12), we
must deal with bounds on ∂f

∂xi
(Y) with

Y = [x1, x1]× ...× [xi=1, xi−1]× {zi} × ...× {zn}.

6 An Implementation for Expression Graphs

Computing bounds from first- or second-order slopes is analogous to forward
automatic differentiation (AD) in that we recur values operation by operation
as a computation proceeds. (For much more on AD, see [12] and the refer-
ences cited therein.) Implementation strategies analogous to those for AD
are thus possible, including source-to-source transformations, operator over-
loading (e.g., in C++), and expression-graph evaluations. For example, in
the related area of interval computations, the “XSC languages” [29] use both
source-to-source transformations (for Pascal-XSC) and operator overloading
(for C-XSC, which now uses templated C++).

Expression-graph evaluations are convenient for some purposes, such as in
the AMPL/solver interface library [9], whose evaluations are briefly sketched,
e.g., in [8, 10]. See [25] for some related expression-graph computations. An

9

advantage of expression graphs over templated C++ is that it is easy to
do a preliminary graph walk to improve the efficiency of subsequent evalua-
tions. (In principle, this efficiency can also be achieved with templated C++
[28], but I find working with expression graphs much easier than template
programming; debugging seems simpler, too.)

interval F (X) ⊃ f(X)

Taylor 1 f(z) + F ′(X)(X − z)

slope 1 f(z) + F [X, z](X − z)

slope 2 f(z) + f ′(z)(X − z)
+F [X, z, z](X − z)2

slope 2* slope 2 plus Theorem 2

Table 1: Bound computations

Starting with source [1] from the AMPL/solver interface library and an
“evaluation tester” long intended for addition to [2] when time permits up-
dating [9]), I have written an expression-graph reader that arranges for sev-
eral kinds of bound computations that are carried out by extended evalua-
tion routines. These include simple interval evaluations, mean-value bounds
(8) using interval derivatives, first-order slope bounds (10) that do not do
component-wise expansions (§4), and second-order slope bounds (14) with
component-wise expansions. The first three bound computations were sim-
ply steps to the fourth. Table 1 summarizes these bound computations. In
this table, F (X), F ′(X), F [X, z], and F [X, z, z] denote outer approximations
of f(X), f ′(X), f [X, z], and f [X, z, z], respectively, computed with interval
arithmetic.

For a function f of n variables whose evaluation involves m operations,
computing simple interval bounds also involves O(m) operations. The com-
plexity of the more elaborate bound computations from slopes is O(nm).
My implementation exploits sparsity (as determined by the initial tree-walk
that sets up the data structures), which reduces the operation count but
not the complexity bound. Since this implementation uses loop-free expres-
sion graphs, the storage complexity is also O(nm), which of course could
be reduced in a more elaborate implementation involving loops or reuse of
intermediate storage.

10

Table 2 reports the widths (3) of the bounds computed as summarized
in Table 1 on two examples shown in AMPL [7] format in Figures 2 and
3. Function “Barnes” (Figure 2) is one of the DAKOTA [3] test problems;
function “Sn525” (Figure 3) appears in [27].

from $DAKOTA/test/barnes.C

var x1 := 30 in [29,31]; var x2 := 40 in [39,41];

param a{0 .. 20};

minimize f: a[0] + a[1]*x1 + a[2]*x1^2

+ a[3]*x1^3 + a[4]*x1^4 + a[5]*x2 + a[6]*x1*x2

+ a[7]*x1^2*x2 + a[8]*x1^3*x2 + a[9]*x1^4*x2

+ a[10]*x2^2 + a[11]*x2^3 + a[12]*x2^4

+ a[14]*x1^2*x2^2 + a[15]*x1^3*x2^2

+ a[16]*(x1*x2)^3 + a[17]*x1*x2^2

+ a[18]*x1*x2^3

+ a[13]/(x2+1) + a[19]*exp(a[20]*x1*x2);

Figure 2: Function “Barnes”

from Schnurr [2008], sec. 5.2

var x{1..3} := 4.125 in [4, 4.25];

minimize f:

sin(x[1]) + sin((10/3)*x[1])

+ log(x[1]) - 0.84*x[1]

+ 1000*x[1]*x[2]^2*exp(-x[3]^2);

Figure 3: Function “Sn525”

For those who wish to try other bound computations with these facilities,
it may be helpful to show how the above computations were done. To start
with, one needs an AMPL processor; student binaries suffice for n ≤ 300
and are freely available for various platforms from [4]. Once source for the
“evaluation tester”, et, is available from netlib, one might obtain the source
and build et by clicking “tar” in the line “lib: solvers (tar)” of http://

netlib.sandia.gov/ampl, then (e.g., under Linux) invoke

11

Method Barnes Sn525

interval 162.417 0.7226
Taylor 1 9.350 0.3609
slope 1 6.453 0.3529
slope 2 3.007 0.1140
slope 2* 2.993 0.1003
true 2.330 0.0903

Table 2: Bound widths

tar xf netlibfiles.tar

cd solvers

gzip -dN *.gz

sh configurehere

make

cd examples

gzip -dN *.gz

sh configurehere

make et

to obtain “et”. Then, e.g.,
ampl -ogbarnes.mod barnes.mod

would turn barnes.mod containing the text in Figure 2 into file barnes.nl,
which one could use with “et” as follows

et

r barnes 6

H 1

F

u

r barnes 7

H 1

F

u

r barnes 8

H 1

u

12

r barnes

H 1

F

to obtain most of the “Barnes” results shown in Table 2 (all except “slope 2”,
which requires special compilation to suppress use of Theorem 2). In short,
et responds to various commands that it summarizes when it sees “?”; the
“r” command reads a file in a specified mode (currently an integer between
1 and 9, with 9 the default), arranging for various kinds of evaluations in the
process. The portion of “?” output that tells about “r” is

r filename mode load problem; reply with

problem number and statistics

mode values: 1 = linear functions only (f_read)

2 = functions and gradients (fg_read)

3 = func, grad, and (Lagr.) Hessian (fgh_read)

4 = partially sep. func & grad (pfg_read)

5 = partially sep. func, grad, Hes (pfgh_read)

6 = interval func and grad evaluations

7 = mean-value evaluations with interval derivs

8 = 1st-order slope evaluations

9 = 2nd-order slope evaluations

The “H” command specifies half-widths for intervals on independent vari-
ables, the “F” command causes bound computations, and the ”u” command
unloads the current problem.

At this writing, the fourth set of bound computations (involving second-
order slopes) is incomplete. Bounding second-order slopes when Theorem 3
does not apply to the whole domain can be tricky. For example, I spent a
while looking at the tanh function. It has the nice property that Theorems
1 and 3 apply to portions of its domain. Specifically, tanh′′(x) > 0 for x < 0,
tanh′′(x) < 0 for x > 0, and there is a point α ≈ 0.6584789484624 with
sinh(α)2 = 1

2
such that tanh(3)(x) > 0 for x < −α or x > α and tanh(3)(x) <

0 for −α < x < α. It is possible to break the outer approximation of
tanh[X, z, z] into various cases, some of which involve finding approximate
zeros of φ′(x) with φ(x) = f [x, z] or φ(x) = f [x, z, z] and, for rigor (not yet
done) penalizing the resulting bounds slightly.

13

Sometimes there are two or more possible ways to compute a bound,
neither of which is always better than the other. Standard practice with in-
terval computations is to compute bounds several ways and intersect them.
For example, Rump [23] gives alternate bound computations for some of the
elementary arithmetic operations. My implementation uses all the alterna-
tive evaluations I am aware of and intersects them.

Initially I used changes of rounding mode [14] as needed to compute rig-
orous bounds, simply assuming that libray functions (such as log, exp, sin,
tanh, etc.) would return correspondingly rounded results. A better approach
would be to use FILIB++ [17], or perhaps fdlibm [5] with penalties. (Library
routines have sometimes been buggy when it comes to directed roundings.
For example, a Linux system I used at Sandia National Labs came with
a libm-2.5.so that gave exp(1) ≈ 7.138761293 rather than 2.718281828
when rounding toward +∞ and gave exp(2) ≈ 2.718281828 rather than
7.389056099 when rounding toward −∞. A later version, libm-2.9.so, be-
haves much better.) As various authors point out (see, e.g., §4 of [17]),
changing the rounding direction is relatively expensive on some commonly
used machines. For example on a system with an Intel Xeon processor (and
using the SSE instructions), doing interval multiplications with changes of
rounding mode took about 11 times longer than doing everything with round-
ing toward −∞. The latter is one of several rounding schemes offered by
FILIB++, and I hope to modify my implementation to use this rounding
exclusively. (For example, if 5(x) and 4(x) denote rounding of x to the
largest floating point number ≤ x and to the smallest floating-point number
≥ x, respectively, then we have 4(x − y) = − 5 (y − x).) I would set the
rounding mode to round towards −∞ at the start of an evaluation routine
and restore it to round-nearest just before the routine returned, so as not to
cause confusion outside the evaluation routines.

7 Concluding Remarks

This paper discusses use of first- and second-order slopes in computing bounds
on algebraic expressions. Such bounds are potentially useful in various con-
texts, such as uncertainty quantification (understanding how inputs known
only to lie in specified intervals can affect the values of given expressions),
global optimization (a context where many authors have used interval meth-
ods), and enforcement of constraints whose violations have dire consequences.

14

Slopes can also be used to construct convex underestimating and concave
overestimating functions and to do constraint propagation [25], i.e., to de-
duce how constraints imply reduced domains for the variables involved in the
constraints, which I have long called “nonlinear presolve”. Use of directed
roundings in presolve algorithms is discussed, e.g., in [6] and [11].

References

[1] http://www.netlib.org/ampl/solvers or http://netlib.sandia.

gov/ampl/solvers.

[2] http://www.netlib.org/ampl/solvers/examples or http:

//netlib.sandia.gov/ampl/solvers/examples.

[3] http://www.cs.sandia.gov/DAKOTA/.

[4] http://www.ampl.com.

[5] http://www.netlib.org/fdlibm or http://netlib.sandia.gov/

fdlibm.

[6] R. Fourer and D. M. Gay. Experience with a primal presolve algorithm.
In W. W. Hager, D. W. Hearn, and P. M. Pardalos, editors, Large
Scale Optimization: State of the Art, pages 135–154. Kluwer Academic
Publishers, 1994.

[7] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL:
A Modeling Language for Mathematical Programming. Duxbury
Press/Brooks/Cole Publishing Co., second edition, 2003.

[8] D. M. Gay. Automatic differentiation of nonlinear AMPL models. In
A. Griewank and G. Corliss, editors, Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application, pages 61–73. SIAM,
1991.

[9] David M. Gay. Hooking your solver to AMPL. Numerical Analysis
Manuscript No. 93-10, AT&T Bell Laboratories, Murray Hill, NJ, 1993,
revised 1997.

15

[10] David M. Gay. More AD of nonlinear AMPL models: Computing Hes-
sian information and exploiting partial separability. In Martin Berz,
Christian Bischof, George Corliss, and Andreas Griewank, editors, Com-
putational Differentiation : Techniques, Applications, and Tools. SIAM,
1996.

[11] David M. Gay. Symbolic-algebraic computations in a modeling language
for mathematical programming. In Götz Alefeld, Jǐri Rohn, and Tet-
suro Yamamoto, editors, Symbolic Algebraic Methods and Verification
Methods, pages 99–106. Springer-Verlag, 2001.

[12] Andreas Griewank and Andrea Walther. Evaluating Derivatives. SIAM,
2008.

[13] Eldon R. Hansen. On solving systems of equations using interval arith-
metic. Math. Computation, 22(102), 1968.

[14] http://en.wikipedia.org/wiki/IEEE 754-1985.

[15] Lubomir V. Kolev. Use of interval slopes for the irrational part of fac-
torable functions. Reliable Computing, 3(1), 1997.

[16] R. Krawczyk and A. Neumaier. Interval slopes for rational functions
and associated centered forms. SIAM J. Numer. Anal., 22(3), 1985.

[17] Michael Lerch, German Tischler, Jürgen Wolff Von Gudenberg, Werner
Hofschuster, and Walter Krämer. Filib++, a fast interval library sup-
porting containment computations. ACM Trans. Math. Software, 32(2),
2006.

[18] Ramon E. Moore. Interval arithmetic and automatic error analysis in
digital computing. Ph.d. dissertation, Stanford University, 1962.

[19] Ramon E. Moore. Interval Analysis. Prentice-Hall, 1966.

[20] Ramon E. Moore. Methods and Applications of Interval Analysis. SIAM,
1979.

[21] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction
to Interval Analysis. SIAM, 2009.

16

[22] Arnold Neumaier. Interval Methods for Systems of Equations. Cam-
bridge University Press, 1990.

[23] S. M. Rump. Expansion and estimation of the range of nonlinear func-
tions. Math. of Computation, 65(216), 1996.

[24] Siegfried M. Rump. Verification methods: Rigorous results using
floating-point arithmetic. draft article for publication in Acta Numerica,
2009.

[25] Hermann Schichl and Arnold Neumaier. Interval analysis on directed
acyclic graphs for global optimization. J. Global Optimization, 33(4),
2005.

[26] Marco Schnurr. Steigungen höherer ordnung zur verifizierten globalen
optimierung. Ph.d. dissertation, Universität Karlsruhe, Germany, 2007.

[27] Marco Schnurr. The automatic computation of second-order slope tuples
for some nonsmooth functions. Electronic Transactions on Numerical
Analysis, 30, 2008.

[28] Todd L. Veldhuizen. C++ templates are turing complete. Technical
report, Indiana University, Computer Science Dept., 2003.

[29] http://www.xsc.de/.

[30] Shen Zuhe and M. A. Wolfe. On interval enclosures using slope arith-
metic. Applied Mathematics and Computation, 39(1), 1990.

17

